9|2|2 9.07 .2021

9. Klasse Gymnasium

ufgabe im Fach Physik –

Bayern LehrplanPLUS

Beachte:

Bei allen Alzuerst den gegebenen Denke an d

Lösungsweg erkennbar se hin, löse nach der gesucht inheit) ein.

n.

gaben nn die

Aufgabe 1:

DANGER LASER RAC avoid direct eye exp λ=532 nm U=3 V

rklasse	Leistung		
1	< 0,4 mW		
2	< 1mW		
3	1 mW – 500 mW		
4	> 500 mW		

tial nsicher ich uge tential

12 P

Der abgebi

a) Berechn seine Laser

b) Beschre für das Exp

c) Berechne der verwer Photonen der Energie 2,3

die Leistung des Lasers und gspotential an. (Ergebnis: P

tieren mit Laserlicht gefäh uf.

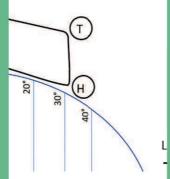
die der Laser in einer Seku trägt. der Tabelle

drei Regeln

rkungsgrad

Aufgabe 2:

Die Abbild ergebende



ich daraus

6 P

- a) Zeichne Tiefdruckg
- b) BerechnHochdruckwww.math

chtung der Luftbewegung 🤅

che von 1,0 m² wirkt, wenr Pa beträgt. och- und

enden

ite 1 von 5

9 2 2		9.07 .2021
Aufgabe 3:	sport	22 P
An der Ost	ochschule wurden Solarko	ochen über
einer Feue	gionen Afrikas entwickelt.	
a) Finde m	tes zwei Vor- und zwei Nac	
Die von S	olarkocher sollen vor Al	enormen
Brennholzk	bholzung von Wäldern i	en Afrikas
einzudämn	nen Zubereitung der Lebe	nem Feuer
gekocht. D	den Rauch können gesundh	rankungen
der Atemw	Mengen CO₂werden freiges	jedoch nur
einen Teil	tzen, da er bei Dunkelheit	kann. Nach
mehreren die Solarko	s der Erfolg des Projektes r dass man auch traditionel	tann, wenn n kann und
durch eine	ten für eine Anschaffung n	ii kaiiii uiiu
durch eine	sterr fur eine Anschaffung n	
Bei dem er	vird das Sonnenlicht über e	, auf einen
Kochtopf g	sen erhitzt.	
Einfallendes Son		
		224 ^{kJ}
		334 ^{kJ} / _{kg}
		2260 kJ kg
		4.10 kJ
		4,19 <u>kg</u> .°C
h\ Nama	NA/# was a ii la a whaa a u wa a u wa al	lakunaa
b) Nenne diese statt	Wärmeübertragung und	ldung, wo
ulese statt		
c) Begründ	opf haben sollte, damit de	hitzt wird.
o, 208. a	op: mason some, aanne ac	
d) Mit Hilf	3,0 Liter Wasser zum Koc	echne mit
, Hilfe der T	er benötigt das 20°C war	renn die in
den Solark	nstrahlen eine Leistung v	
e) Um alle	zutöten, sollte das Wasse	n kochen.
Berechne	iel Wasser in dieser Zeit v	
f) Erkläre	Teilchenmodells, wieso	Flüssigkeit
(während	nperaturzunahme stattfin	
	arbeitungszeit 45 Minut	
		ງ Punkte)
		·
www.math		ite 2 von 5

LÖSUNGE

Aufgabe 1:

a)

3 P

Geg: U = 3

Ges: P

$$P = U \cdot I =$$

Der Laser g

d ist gefährlich für das Auge

b)

2 P

Beim Expe das Auge g er, kann das Laserlicht durc chädigen. eflexion in

Regeln:

- Ke

n der Klasse 3 und 4 Achtung-Laser

- Au

ifen, ob das Licht an einem

len kann

- Vo

Hier könnten auch noch we

nt werden.

Die genanr

genam mer kommen daen noem w

7 P

Coart

Geg: E_{Laser} = Ges: N

$$P = \frac{E}{t}$$

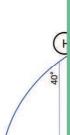
c)

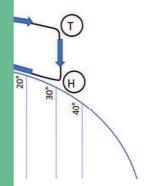
$$E = P \cdot t =$$

$$\eta = \frac{E_{gen}}{E_{aufge}}$$

$$E_{genutzt} =$$

$$,1 = 0,5 \text{ mJ}$$


$$N = \frac{E_{genu}}{E_{Lase}}$$


$$1.10^{15}$$

Aufgabe 2:

a)

3 P

9 2 2		9.07 .2021
b)		3 P
Geg: A = 1,	Ges: F	
$p = \frac{F}{A}$		
$F = p \cdot A =$	03400 N = 103,4 kN = 0,	
Aufgabe 3:		
a)		2 P
Vorteile: d	z wird reduziert, keine Rau	
Nachteile:	elheit, Kosten bei der Anso	
b)		6 P
Wärmestra		
Einfallendes Son		
Emailendes son		
Wärmeleitui	Konvektion	
Bei Sonner	/ärmestrahlung. Die Übert	n Kochtopf
und das Wa durch Konv	itung statt. Im Wasser ode statt.	bertragung
c)	statt.	2 P
Der Kochto	haben, da durch eine dun	estrahlung
absorbiert	. Habell, ad adren eine adn	estramang
d)		6 P
Geg: m = 3	$\vartheta_1 = 20^{\circ} \text{ C}; \vartheta_2 = 100 ^{\circ} \text{C}$	
$P = \frac{E}{t} $		
$t \cdot P = E$		
$t = \frac{E}{P} = \frac{c \cdot n}{r}$	$\frac{20 ^{\circ}\text{C})}{} = 1340,8 \text{s} = 22 \text{m}$	

ite **4** von **5**

www.math

e)

4 P

Geg: t = 3,0

nv

$$P = \frac{E}{t} = \frac{Q}{t}$$

$$Q = P \cdot t =$$

$$W \cdot 180 \text{ s} = 135000 \text{ J} =$$

$$Q = q_{V} \cdot m$$

$$m = \frac{Q}{q_V} =$$

g

f)

2 P

Beim Verda über. Die z führt somit om Aggregatszustand flüss so die Bindungen zwischen rerhöhung. gasförmig lösen und